
Topic 11: Conditional Probability and Independence

The question of the hot hand is really a question about conditional probability, namely “does the probability
of success change for the player depending on what has happened in the previous trial of the experiment?”.
In this section we look at conditional probability and independence. We will use these concepts to extend
our models from the previous section to basketball players with a probability of success greater than or less
than 0.5. You can find more details on conditional probability and independence in [?]

1. Events

Since we are often interested in probabilities of outcomes or events which are not just simple outcomes of
our sample space, we need to consider how to calculate probabilities of such events.

Definition 1.1. An Event E is a subset or sub collection of the simple outcomes of the sample space S.

All subsets of the sample space describe an event including the empty set(the event that nothing happens).
Events with a single simple outcome correspond to the simple outcomes of the sample space. The entire
sample space also qualifies as an event; it is the event that something happens. Given a verbal description of
an event, the corresponding subset is given by all outcomes which fit the verbal description. When speaking
about general rules of calculating probabilities for events, we usually name the events using capital letters
A, B, C, D etc....

Example 1.1. The experiment of rolling a six sided die and observing the number on the uppermost face
has a sample space given by

S = {1, 2, 3, 4, 5, 6}.

Find the subsets corresponding to the following verbal description of the given events:

(a) E = the event that the number is even.

(b) F = the event that the number is larger than two.

We say that an event occurs on a given trial of the experiment if the trial yields an outcome in the event
set.

1.1. Probability of an Event. To calculate the probability of an event A, denoted by P (A), we add the
probabilities of all of the simple outcomes in the event A.

Example 1.2. If I roll a fair six sided die and observe the number on the uppermost face, then all faces are
equally likely to appear. The probability distribution for the experiment is given in the table below

Outcome Probability
1 1/6
2 1/6
3 1/6
4 1/6
5 1/6
6 1/6

Let O denote the event that the number on the
uppermost face is odd. Then O corresponds to the
subset of the sample space given by O = {1, 3, 5}.
Then P (O) = P (1) + P (3) + P (5) = 3/6.

Example 1.3. If I roll a fair six sided die twice and observe the number on the uppermost face for both
rolls. The list of possible outcomes is shown below as pairs of numbers listed in the order in which they were
observed.
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Sample Space: =

{(1, 1) (1, 2) (1, 3) (1, 4) (1, 5) (1, 6)
(2, 1) (2, 2) (2, 3) (2, 4) (2, 5) (2, 6)
(3, 1) (3, 2) (3, 3) (3, 4) (3, 5) (3, 6)
(4, 1) (4, 2) (4, 3) (4, 4) (4, 5) (4, 6)
(5, 1) (5, 2) (5, 3) (5, 4) (5, 5) (5, 6)
(6, 1) (6, 2) (6, 3) (6, 4) (6, 5) (6, 6)}

We reason that all of these outcomes are equally likely, since the die is symmetric and all sides are equally
likely to appear on the uppermost face. Since there are 36 equally likely simple outcomes in the sample
space, we assign a probability of 1/36 to each.

(a) Let E be the event that the numbers observed add to 7.

E
(in red) =

{(1, 1) (1, 2) (1, 3) (1, 4) (1, 5) (1, 6)
(2, 1) (2, 2) (2, 3) (2, 4) (2, 5) (2, 6)
(3, 1) (3, 2) (3, 3) (3, 4) (3, 5) (3, 6)
(4, 1) (4, 2) (4, 3) (4, 4) (4, 5) (4, 6)
(5, 1) (5, 2) (5, 3) (5, 4) (5, 5) (5, 6)
(6, 1) (6, 2) (6, 3) (6, 4) (6, 5) (6, 6)}

What is the probability of E, P (E)?

(b) Let F be the event that the numbers observed add to 11. List the elements of the set F and calculate
P (F ).

Equally likely outcomes For an event A, we let n(A) denote the number of outcomes in A. If all outcomes
in a sample space are equally likely, then P (A) = n(A)/n(S) where n(S) is the number of outcomes in the
sample space.

1.2. Intersection of events. Given two events A and B, we can define a new event A ∩ B which is the
event that both A and B occur. The simple outcomes in the set corresponding to A ∩ B is the set of all
simple outcomes which are in both events.

Example 1.4. If our experiment is to roll a fair six sided die twice and observe the number on the uppermost
face for both rolls. Let
A be the event that the number on the first roll of the die is a 6
and let
B is the event that the number on the second roll of the die is a 6.
The outcomes in A are shown in red on the left below and the outcomes in B are shown in blue on the right.

{(1, 1) (1, 2) (1, 3) (1, 4) (1, 5) (1, 6)
(2, 1) (2, 2) (2, 3) (2, 4) (2, 5) (2, 6)
(3, 1) (3, 2) (3, 3) (3, 4) (3, 5) (3, 6)
(4, 1) (4, 2) (4, 3) (4, 4) (4, 5) (4, 6)
(5, 1) (5, 2) (5, 3) (5, 4) (5, 5) (5, 6)
(6, 1) (6, 2) (6, 3) (6, 4) (6, 5) (6, 6)}

{(1, 1) (1, 2) (1, 3) (1, 4) (1, 5) (1, 6)
(2, 1) (2, 2) (2, 3) (2, 4) (2, 5) (2, 6)
(3, 1) (3, 2) (3, 3) (3, 4) (3, 5) (3, 6)
(4, 1) (4, 2) (4, 3) (4, 4) (4, 5) (4, 6)
(5, 1) (5, 2) (5, 3) (5, 4) (5, 5) (5, 6)
(6, 1) (6, 2) (6, 3) (6, 4) (6, 5) (6, 6)}

The event A ∩ B corresponds to the set of all outcomes which belong to both sets. Thus we see that
A ∩B = {(6, 6)}, since (6, 6) is the only outcome which belongs to both sets. Therefore P (A ∩B) = 1/36.
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2. Conditional Probability

Sometimes our computation of the probability of an event is changed by the knowledge that a related
event has occurred (or is guaranteed to occur) or by some additional conditions imposed on the experiment.
We see some examples below:

For Example: In a previous example, we estimated that the probability that LeBron James will make
his next attempted field goal in a major league game is 0.496. We used the proportion of field goals made
out of field goals attempted (FG%) throughout his career to estimate this probability. If we look at the
statistics from season to season and some of the split statistics for the 2014/2015 season
for LeBron James shown below, we see that the FG% changes from season to season and also when calculated
under specified conditions such as home games vs. away games. For example the FG% for games played
after 2 days rest in the 2014/2015 season(to date) is 0.52 which is higher than the overall FG% for the season
which is 0.489.

It may be more appropriate to estimate the probability that LeBron James’ next field goal attempt in the
current season (2014/2015) will be successful using the field goal percentage for the current season.

0.489 =
Field goals made in the 2014/2015 season

Field goals attempted in the 2014/2015 season

Here we are estimating the probability that LeBron will make the field goal given the extra information that
the attempt will be made in the current season. This is referred to as a conditional probability, because
we have some extra or prior information about conditions under which the experiment will be performed.

If we know that the next field goal attempt will be made after 2 days rest, it might be appropriate to use
the field goal percentage for games played in the current season after 2 days rest which is 0.52. (Note the
data used for this statistic is from 10 games with an average of 17.9 shots per game, giving us a data set
of sufficeint size to make such an estimate). Here we are estimating a conditional probability given
that the underlying conditions of the experiment are that the next shot will be taken in the
2014/2015 season in a game after 2 days rest.

http://espn.go.com/nba/player/stats/_/id/1966/lebron-james
http://espn.go.com/nba/player/stats/_/id/1966/lebron-james
http://insider.espn.go.com/nba/player/splits/_/id/1966/lebron-james
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Definition 2.1. If A and B are events in a sample space S, with P (B) 6= 0, the conditional probability
that an event A will occur, given that the event B has occurred (or is guaranteed to occur) is denoted by

P (A|B).

We can interpret this symbol as the proportion of times that we would expect the event A to happen if we
were to repeat many trials of the experiment with the underlying condition that B is guaranteed to happen
on each trial.

2.1. Calculating conditional probability.

2.1.1. Reasoned Probability. If we have used logic to create a sample space for an experiment which
has equally likely outcomes, then we can calculate the probability that A will occur given that B is
guaranteed to occur by restricting our attention to elements of the sample space where B is guaranteed to
occur. We can then calculate the probability of A given that B is guaranteed to occur as the proportion of
the outcomes in the set corresponding to B for which A also occurs. In other words when we have equally
likely outcomes in our sample space, we get

P (A|B) =
n(A ∩B)

n(B)
=

P (A ∩B)
P (B)

.

In general the formula

P (A|B) =
P (A ∩B)

P (B)

remains true for all sample spaces, whether the outcomes are equally likely or not. This formula is reasonably
intuitive as we will see below.

Example 2.1. Let us consider the experiment from above where we roll a fair six sided die twice and observe
the number on the uppermost face for both rolls.

Let
A be the event that the number on the first roll of the die is a 6
B be the event that the number on the second roll of the die is a 6
and let C be the event that the sum of the numbers on both rolls of the dice is greater than or equal to 11.
We have P (A) = 1/6 = P (B) and P (C) = 3/36 = 1/12.
Suppose now that we performed the first roll of the die and we see that the number on the uppermost face
is a 6. In other words, we know that the event A has already happened.

(a) Suppose that we have not yet rolled the die a second time and we would like to calculate the probability
that B will happen given that A has already happened, P (B|A). That is we wish to calculate the probability
that we will roll a six on the second given the prior information that we got a six on the first.

{(1, 1) (1, 2) (1, 3) (1, 4) (1, 5) (1, 6)
(2, 1) (2, 2) (2, 3) (2, 4) (2, 5) (2, 6)
(3, 1) (3, 2) (3, 3) (3, 4) (3, 5) (3, 6)
(4, 1) (4, 2) (4, 3) (4, 4) (4, 5) (4, 6)
(5, 1) (5, 2) (5, 3) (5, 4) (5, 5) (5, 6)
(6, 1) (6, 2) (6, 3) (6, 4) (6, 5) (6, 6)}

The six outcomes in A are shown in red. We know
that when the experiment is completed, the result will
be one of those outcomes and all are equally likely.
One of of these six outcomes exactly one is in the
event B giving us that P (B|A) = n(B∩A)

n(A) = 1/6.

(b) Suppose now that we have not yet rolled the die a second time and we would like to calculate the
probability that C will happen given that A has already happened, P (C|A). That is we wish to calculate
the probability that the sum of the numbers on both rolls will be greater than or equal to 11 given the prior
information that we got a six on the first.
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{(1, 1) (1, 2) (1, 3) (1, 4) (1, 5) (1, 6)
(2, 1) (2, 2) (2, 3) (2, 4) (2, 5) (2, 6)
(3, 1) (3, 2) (3, 3) (3, 4) (3, 5) (3, 6)
(4, 1) (4, 2) (4, 3) (4, 4) (4, 5) (4, 6)
(5, 1) (5, 2) (5, 3) (5, 4) (5, 5) (5, 6)
(6, 1) (6, 2) (6, 3) (6, 4) (6, 5) (6, 6)}

P (C|A) = n(C∩A)
n(A) = .

2.1.2. Estimates from Data. When we are estimating conditional probabilities using relative fre-
quencies, as we did in the basketball example above, we can estimate P (A|B) by restricting our attention
to trials of the experiment for which B had occurred (or for which B was an underlying condition) and
calculate the proportion of those trials for which A also occurred (or the relative frequency of A among the
trials in which B occurred). The resulting formula is the same as above:

P (A|B) =
n(A ∩B)

n(B)

where n(A ∩B) and n(B) denotes the number of trials in the data where the events A ∩B and B occurred
respectively.

Activity 1: The Hot Hand and Conditional Probability Our initial question about the hot hand can
be translated to a question about conditional probability. Consider a string of data of baskets and misses
resulting from a (large) number of consecutive shots taken by a basketball player. For any given shot, let
the event BP (basket previous) denote the event that the previous shot resulted in a basket. For any given
shot, let B denote the event that the given shot results in a basket. Our question about the hot hand in this
case would translate to “Is P (B|BP ) > P (B)?”

We can estimate P (B|BP ) from the data as long as there are sufficiently many shots in the sample where
the event BP occurs and if we are estimating P (B|BP ) from the string of data, it seems appropriate to
estimate P (B) from the same set of data.

Lets look at the following string of data showing consecutive shots collected from 8 consecutive games for
Dion Waiters in regular season basketball games. We have colored the shots in the event PB in red.

MBBMBMBMB (9 shots)
MMMMMMBM (8 shots)
MBMBBMMMBB (10 shots)
BMMMMM (6 shots)
BMBMBMMMBMMBBM (14 shots)
BMBMBMBMBBBMBBM (15 shots)
MBBMMMBMMMMMMM (14 shots)
MMMMBBBMMM (10 shots)
MMBMBBMMMMMB (12 shots)
BMBMMBMMMBBMMMM (15 shots)
MMMMBBBM (8 shots)
BBMMBMMMMBMM (12 shots)
MMMBMMMMM (9 shots)
BBBBBMBBM (9 shots)
MBBMBMMBBMMMMBBB (16 shots)
MBMMMBMMMMBMBBMB (16 shots)
BBBBMMMMBMMBMB (14 shots)
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MMMBMMMMM (9 shots)

(a) Estimate P (B) from the entire data set by calculating the relative frequency of B in the data set.

(b) Estimate P (B|BP ) from the data by calculating the relative frequency of B in the red outcomes (the
trials in which BP occurred) in the data set.

P (B|BP ) ≈ n(B ∩BP )
n(BP )

=

3. Independence

Note that sometimes extra underlying conditions for an experiment (or the fact that another event has
happened or is guaranteed to happen) change the probability of an event and sometimes they do not. In
other words, sometimes P (A|B) = P (A) and sometimes P (A|B) 6= P (A).

Definition 3.1. Two events A and B (where P (B) 6= 0) are said to be independent if P (A|B) = P (A).
This amounts to saying that the fact that B has happened or is guaranteed to happen does not change the
probability that A will happen.

Since P (A|B) = P (A∩B))
P (B) (assuming that P (B) 6= 0), saying that A and B are independent is equivalent

to saying that P (A) = P (A∩B))
P (B) which in turn is equivalent to saying that

P (A ∩B) = P (A)P (B).

From this we can also deduce that if P (A|B) = P (A), we must have P (A ∩ B) = P (A)P (B) and P (B) =
P (A∩B)

P (A) = P (B|A). Thus if any three of the formulas below hold true for two events A and B, we can
conclude that the events A and B are independent and vice versa: if the events are independent, we can
conclude that all three formulas hold true.

P (A|B) = P (A), P (A ∩B) = P (A)P (B), P (B|A) = P (B).

Example 3.1. Let us consider the experiment from above where we roll a fair six sided die twice and observe
the number on the uppermost face for both rolls.

Let
A be the event that the number on the first roll of the die is a 6,
B be the event that the number on the second roll of the die is a 6
and let C be the event that the sum of the numbers on both rolls of the dice is greater than or equal to 11.
We have P (A) = 1/6 = P (B) and P (C) = 3/36 = 1/12.

(a) Are A and B independent events?
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(b) Are A and C independent events?

The Hot Hand The question about the hot hand can also be translated to a question about independence
of events. Consider a string of data of baskets and misses resulting from a (large) number of consecutive
shots taken by a basketball player. For any given shot, let the event BP (basket previous) denote the event
that the previous shot resulted in a basket. For any given shot, let B denote the event that the given
shot results in a basket. Our question about the hot hand in this case would translate to “Are B and BP
independent events (and if not is P (B|BP ) > P (B)).” (Note that it may be true that B and BP are not
independent events and P (B|BP ) < P (B) for some players. )

Example 3.2. Using your estimates from the data set for consecutive shots taken by Dion Waiters above,
decide whether the events B and BP are independent for Dion Waiters.

3.1. Many Independent Events. Several events E1, E2, . . . , En are independent if P (Ei1∩Ei2∩· · ·∩Eik
) =

P (Ei1) ·P (Ei2) · · · · ·P (Eik
) for any subset {i1, i2, . . . , ik} of {1, 2, . . . , n}. In the cases of independent events

we can multiply probabilities:
If E1, E2, . . . , En are independent events then

P (E1 ∩ E2 ∩ · · · ∩ En) = P (E1) · P (E2) · · · · · P (En).

Example 3.3. Independent trials of an experiment. If I roll a die three times, I do not expect any
combination of events that might happen on the first two rolls of the die to affect the probability of any event
on that might happen on the third roll (I am using logic to deduce independence here). Thus I can use the
formula above to calculate the probability that I get a “6” on the first roll, a “6” on the second roll and
something less than 6 on the third roll.

Example 3.4. Independent trials of an experiment. If I have an unfair coin where the probability of
heads is (.7) on each flip and the probability of tails is (.3) on each flip, what is the probability that I get the
sequence HHHT if I flip the coin 4 times?
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Definition 3.2. Experiments with only two outcomes called success (s) and failure (f) where the probability
of success is p are called Bernoulli experiments. Note that since there are only two outcomes in the sample
space, we must have that the probability of failure (f) on each trial is given by P (f) = 1− p. Each trial of a
Bernoulli experiment is called a Bernoulli Trial.

4. Sequences of Baskets (B) and Misses(M) generated randomly with P (B) 6= 1/2.

In the last section we learned what distribution of runs we should expect in a sequence generated randomly
by flipping a fair coin many times and used our results to compare our expectation to data for basketball
players with a 50% chance of making every shot. We would naturally expect that the distribution of runs
in a sequence of heads and tails generated by an unfair coin would differ from that of a fair coin. In this
section we will learn what to expect in a randomly generated sequence of success’ and failures generated
from independent Bernoulli trials when the probability of success is not necessarily equal to 1/2. We will
also determine what the expected length of the longest run of successes should be in such a sequence and
compare it to some real data.

Example 4.1. Using the applet. from the University of Alabama in Huntsville introduced in the last
section, we simulated a sequence of 30 shots by a basketball player for whom the probability of getting a
basket on each shot is 0.75, by setting p = 0.75, n = 1 and pressing the play button 30 times. The sequence is
written below. Check if the longest run of baskets is longer than the longest run of heads expected if I flipped
a fair coin 30 times.

H H H H H T H H T H T H T H H H H T T T H H H H H H H H H T

4.1. Modelling Runs of Success’. Consider now a basketball player who has a probability p of making
a basket each time he/she takes a shot. (Note that we are implicitly assuming that the shots taken are
independent, since we assume that the probability of a basket on any given shot does not depend in any way
on what happened in previous shots.) Each time the player takes a shot, there are two possible outcomes
B (basket) or M (miss). Since P (B) = p and P (B) + P (M) = 1, we must have P (M) = 1 − P (B).
Lets Consider Experiment A from the last section, but this time, we will conduct the experiment withe the
probability of a basket on each shot equal to p. In case of confusion, we will call it Experiment Ap.

Experiment Ap The player shoots until the first time he/she misses a shot and then the experiment is over.
The outcomes observed from this experiment will be all possible strings of Baskets (B) followed by a single
Miss (M). Thus the sample space looks like:

{M, BM, BBM, BBBM, BBBBM, BBBBBM, . . . }
Using the assumption of independence, we can multiply probabilities to get

P (M) = 1− p, P (BM) = p(1− p), P (BBM) = p2(1− p), . . . , P (BBBM) = p3(1− p).

The probability distribution for this experiment is shown below:

http://www.math.uah.edu/stat/applets/BinomialCoinExperiment.html
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Length of
run of Baskets Outcome Probability

0 M (1− p)
1 BM p(1− p)
2 BBM p2(1− p)
3 BBBM p3(1− p)
...

...
...

N BB . . . B︸ ︷︷ ︸
N times

M pN (1− p)

...
...

...

We show pictures of the distributions when p = 0.25 and p = 0.75 below. As you might expect, longer runs
of success have a higher probability for greater values of p.

0 1 22 3
Number of Baskets

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Probability

Number of Baskets

p = 0.25

0 1 22 3 4 5 6 7 8 9 10 11 12 13 14 15
Number of Baskets

0.1

0.2

Probability

Number of Baskets

p=0.75

Example 4.2. A basketball player with a probability p of getting a basket on each shot keeps shooting until
he/she misses their first shot.

(a) If p = .3, what is the probability that the outcome will be of the form BBBBBBM? ( where B stands
for a basket and M stands for a miss.)

(b) If p = .8, what is the probability that the outcome will be of the form BBBBBBM?

The Longest Run Note that if a player repeated Experiment Ap 1000 times, we expect that about p1000
outcomes to have 1 basket or more (since roughly (1 − p)1000 of the outcomes should be basket runs of
length 0 (M)). We expect about p21000 outcomes to have 2 baskets or more, p31000 outcomes to have 3
baskets or more, . . . about pN1000 of the 1000 outcomes to have N baskets or more. At some point, we
will find a final value of N for which pN × 1000 rounds to 1, indicating that we would expect only one run
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of length N or greater in the data. This gives us a method of estimating the length of the longest run of
baskets that should appear in our data. We can work by trial and error to find the largest value of N for
which pN × 1000 rounds to 1 or we can use logarithms to solve the equation pN (1000) = 1 to get

N = logp(
1

1000
) =
− ln(1000)

ln(p)

where the function ln denotes the natural logarithm and is available on most scientific calculators. We round
the answer off to find an integer value for N .

The longest run in M trials of Experiment Ap

Similarly, if we run Experiment Ap R times, we expect the longest run of baskets to have length approximately equal
to

logp1/R =
− ln(R)

ln(p)
(where ln denotes the natural logarithm function) or the largest integer L for which pL ×R rounds off to 1.

Activity 3: Comparing Data to Expectations

Randomly generated data with p = 0.75 Lets look at some data generated randomly to see how it
compares with our predictions. The following string of data was generated by the Excel file Trials1.xlsx.
We used Excel to simulate 50 trials of this experiment which resulted in 186 shots. In this case, we would
expect about (0.25)50 = 12.5 runs of baskets of length 0 (M), (0.25)(0.75)50 ≈ 9 runs of baskets of length
1, (0.25)(0.75)50 ≈ 7 runs of baskets of length 2 . . . . Keeping in mind that the law of large numbers just
gives us a rough idea of what to expect in a relatively low number of trials, how well does this data fit our
expectations for the number of runs of different length?

B B M B B B M M M M B B B M B B B B B M B B B B B B B B B B B M M M B B B B M M M M M
B B B M B B B M B B M B M B M B B B B B B B B B B B B B B B B B M B B B M B B B B B M B
B B M B M M B B M B M B B M B B M B B B B M B B B M B B B B B M B B M B B B M B B B B
B B B B B M M B B B B M B B B M B B B M B B M M B B M M B B B M B B B B B M B B B B B
M B B B B B B B B M M M

What is the length of the longest run of baskets in the above set of data and how does it compare to what
you might expect in 50 trials of Experiment A0.75?

4.2. What to expect in a sequence of K shots by a player with prob. p of success on each? As
with Experiment A of the previous section, If a basketball player performs R trials of Experiment Ap above,
he/she usually ends up with a lot more than R shots. We saw that 50 trials of Experiment A.75 led to 186
shots in the randomly generated sample in the above Activity. If a player with a probability p of making
each shot takes K shots, where K is very large, we would expect (by the law of large numbers) that roughly
(1 − p)K of the outcomes would be Misses. Therefore the player will have run roughly (1 − p)K trials of
Experiment Ap.

Below we show the distribution of runs of baskets we should expect from K Bernoulli trials where the
probability of success (B) on each trial is p.
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Experiment: K Bernoulli trials, p = P (B), 1− p = P (M)
Length of run of Bs Outcome Expected Number

1 B p(1− p)× (1− p)K

2 BB p2(1− p)× (1− p)K

3 BBB p3(1− p)× (1− p)K

...
...

...
N BB . . . B︸ ︷︷ ︸

N times

pN (1− p)× (1− p)K

...
...

...

Example 4.3. If a basketball player with a 60% chance of success on every shot takes 100 shots in a row,
how many runs of baskets of length 4 would you expect to see in the data?

The longest run of success in K Bernoulli Trials with P (S) = p (see [?] for further development of
this topic.): Out of K trials of a Bernoulli Experiment with probability of success equal to p, we expect the
longest run of success’ to have length approximately equal to

logp
1

(1− p)K
=
− ln((1− p)K)

ln(p)

(where ln denotes the natural logarithm function) or the largest integer L for which pL × (1 − p)K rounds
off to 1.

Example 4.4. If a basketball player with a 60% chance of success on every shot he/she takes, what is the
longest run of baskets you would expect to see in a sequence of 100 consecutive shots for that player?

4.2.1. What about Tails? To convert the above formulas to formulas for probabilities of runs of tails, you
should substitute 1− p for p in the formulas.

Example 4.5. The following data shows a string of consecutive shots taken by Dion Waiters who has a
career FG% of 0.417.
(spaces separate different games and empty lines indicate a rest).

(a) Is the longest run of baskets in the data consistent with what one would expect for 548 Bernoulli Trials
with p = 0.417?

(b) Is the longest run of misses in the data consistent with what one would expect for 548 Bernoulli Trials
with p = 0.583?

 http://espn.go.com/nba/player/_/id/6628/dion-waiters
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